The (log) probability function $p({\bf x}|\theta)$ assigns a probability (density) to any joint configuration of variables $\bf x$ given fixed parameter $\theta$.
Instead, thinking of $p({\bf x}|\theta)$ as a function of $\theta$ for fixed $\bf x$:
\[L(\theta;{\bf x}) = p({\bf x}|\theta)\]
\[l(\theta;{\bf x})=log\;p({\bf x}|\theta)\]
This function is called the (log) "likelihood"
if we choose $\theta$ that maximizes some cost function $c(\theta)$.
$c(\theta) = l(\theta;D)$ ==> maximum likelihood (ML)
$c(\theta) = l(\theta;D)+r(\theta)$ ==> maximum a posteriori/penalty BIC, AIC, ...
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment